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In this paper we discuss the multicriteria p-facility median location problem on networks with positive
and negative weights. We assume that the demand is located at the nodes and can be different for each
criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the graph and
the corresponding set of non-dominated objective values. To that end, we first characterize the linearity
domains of the distance functions on the graph and compute the image of each linearity domain in the
objective space. The lower envelope of a transformation of all these images then gives us the set of all
non-dominated points in the objective space and its preimage corresponds to the set of all Pareto-optimal
solutions on the graph. For the bicriteria 2-facility case we present a low order polynomial time algo-
rithm. Also for the general case we propose an efficient algorithm, which is polynomial if the number
of facilities and criteria is fixed.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Many real-world applications are concerned with finding an
optimal location for one or more new facilities on a network (road
network, power grid, etc.) minimizing a function of the distances
between these facilities and a given set of existing facilities
(clients, demand points), where the latter typically coincide with
vertices. For a recent book on location theory the reader is referred
to Nickel and Puerto (2005) and references therein. Since the first
seminal paper by Hakimi (1964), an ever growing number of
results have been published in this field.

The majority of research focuses on the minimization of a single
objective function that is increasing with distance. However, in the
process of locating a new facility usually more than one decision
maker is involved. This is due to the fact that often the cost in-
curred with the decision is relatively high. Furthermore, different
decision makers may (or will) have different (conflicting) objec-
tives. In other situations, different scenarios must be compared
due to uncertainty of data or still undecided parameters of the
model. One way to deal with these situations is to apply scenario
analysis. Another way of reflecting uncertainty in the parameters
is to consider different replications of the objective function.
Hence, there exists a large number of real-world problems which
can only be modeled suitably through a multicriteria approach,
especially when locating public facilities.

An additional difficulty is that we are usually dealing with con-
flicting criteria and a single optimal solution does not always exist
(which would be an optimal solution for each of the criteria).
Therefore, an alternative solution concept has to be used. One pos-
sibility is to determine the set of non-dominated solutions. That is,
solutions such that there exists no other solution which is at least
as good for all decision makers and strictly better for at least one of
them. These solutions are often called Pareto-optimal. For an over-
view on multicriteria location problems the reader is referred to
Nickel, Puerto, and Rodríguez-Chía (2005).

In contrast to the practical needs described above, network
location research involving multiple criteria has received little
attention, especially when it comes to multiple facilities. In this pa-
per, we consider the p-facility median location problem with sev-
eral objective functions. Hereby, each objective function is
representing the goal of one decision maker and the aim is to lo-
cate p facilities in order to minimize the total weighted distance
from the clients to their closest facility. The weights assigned to cli-
ents vary from one decision maker to another, yielding different
objective functions. It might even happen that one of the facilities
is desirable for some decision makers and, at the same time, unde-
sirable for others. Undesirable facilities are usually modeled using
negative weights. See Eiselt and Laporte (1995) for more details on
these problems. Before we discuss the literature, we present a
practical example for this model. Suppose we want to locate two
garbage dumps and we have a set of residential and recreational
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areas and a set of industrial sites where garbage has to be collected.
There are two decision makers involved: the ‘‘Business economist’’
who has to keep the costs in check and the ‘‘Politician’’ who is con-
cerned about the nuisance of the garbage dumps and the garbage
trucks on the population. The business economist wants the dumps
to be close to all sites to minimize travel times and costs. To that
end he associates positive weights with the residential and indus-
trial areas that are proportional to the average number of required
garbage collections. In contrast to that, the politician wants to
minimize the nuisance of the garbage dumps and of the trucks
frequenting the garbage dumps for the population. Therefore, he
assigns to each site a second, negative value. The smaller the
weight is, the more likely it is that the residential area is far away
from the dumps and the less likely it is that trucks that are not
bound for these areas are simply passing through them on their
way to the dumps. Formulating this problem in mathematical
terms results in a bi-criteria 2-facility location model.

There are many other applications of multicriteria multifacility
location problems. Bitran and Lawrence (1980) consider the multi-
criteria location of regional service offices in the expanding operat-
ing territories of a large property and liability insurer. These offices
serve as first line administrative centers for sales support and
claims processing. Another application of multiobjective optimiza-
tion in the context of location theory can be found in Johnson
(2001) that discusses a spatial decision making problem for hous-
ing mobility planning. Ehrgott and Rau (1999) present an analysis
of a part of the distribution system of BASF SE, which involves the
construction of warehouses at various locations. The authors eval-
uate 14 different scenarios and each of these scenarios is evaluated
with the minimal cost solution obtained through linear program-
ming and the resulting average delivery time at this particular
solution. For more applications see Schöbel (2005), Carrano, Takah-
ashi, Finseca, and Neto (2007), and Kolokolov and Zaozerskaya
(2013).

Concerning the methodological aspects of multicriteria network
location problems, Hamacher, Labbé, and Nickel (1999) discuss the
network 1-facility problem with median objective functions. They
show that for Pareto-optimal locations on undirected networks no
node dominance result can be proven. Hamacher, Labbé, Nickel,
and Skriver (2002) provide a polynomial time algorithm for the
1-facility problem when the objectives are both weighted median
and anti-median functions. The method is generalized for any
piecewise linear objective function. Zhang and Melachrinoudis
(2001) develop a polynomial algorithm for the 2-criteria 1-facility
network location problem maximizing the minimum weighted
distance from the service facility to the nodes (maximin) and max-
imizing the sum of weighted distances between the service facility
and the nodes (maxisum). Skriver, Andersen, and Holmberg (2004)
introduce two sum objectives and criteria dependent edge lengths
for the 1-facility 2-criteria problem. Nickel and Puerto (2005) solve
the 1-facility problem when all objective functions are ordered
medians. Colebrook and Sicilia (2007a, 2007b) provide polynomial
algorithms for solving the cent-dian 1-facility location problem on
networks with criteria dependent edge lengths and facilities being
attractive or obnoxious.

Concerning the single criterion multifacility location problem
on networks, Kalcsics (2011) derives a finite domination set for
the p-median problem with positive and negative weights. For
the 2-facility case, the author presents an efficient solution proce-
dure using planar arrangements. Based on this approach, Kalcsics,
Nickel, Puerto, and Rodríguez-Chía (2012) solve the 2-facility case
for different equity measures.

Many of the previous papers study the problem on trees as a
particular case of generalized networks. The first work dealing
with several objectives and facilities is provided by Tansel, Francis,
and Lowe (1982) who develop an algorithm for finding the efficient
frontier of the biobjective multifacility minimax location problem
on a tree network. This problem involves as objective functions
the maximum of the weighted distances between specified pairs
of new and existing facilities.

Despite its intrinsic interest as discussed above, to the best of
our knowledge there are no papers discussing the multicriteria
p-facility median location problem on networks and no results
are known until the moment to obtain the set of Pareto-optimal
solutions.

The remainder of this paper is organized as follows. Section 2
introduces the notation and concepts used throughout the paper.
Section 3 presents some properties of the k-criteria p-facility med-
ian problem on networks. Section 4 is devoted to the development
of a polynomial algorithm for the 2-criteria 2-facility version of the
problem. A solution procedure for the general case is proposed in
Section 5. Finally, Section 6 contains some conclusions and possible
extensions of the analyzed problems.
2. Problem description and general concepts

2.1. Problem definition

Let G ¼ ðV ; EÞ be an undirected connected graph with node set
V ¼ fv1; . . . ;vng and edge set E ¼ fe1; . . . ; emg. Each edge e 2 E has
a positive length ‘ðeÞ, and is assumed to be rectifiable. Let AðGÞ de-
note the continuum set of points on edges of G. We denote a point
x 2 e ¼ ½u;v � as a pair x ¼ ðe; tÞ, where t (0 6 t 6 1) gives the
relative distance of x from node u along edge e. For the sake of
readability, we identify AðGÞ with G and AðeÞ with e for e 2 E. Let
k P 1 be the number of criteria of the problem and define
Q ¼ f1; . . . ; kg. Each vertex v i 2 V has a real-valued weight
wq

i 2 R, q 2 Q . Let J ¼ f1; . . . ; pg, where p is the number of facilities
to be located. We denote by X ¼ ðx1; . . . ; xpÞ the vector of locations
of the facilities, where xj 2 G, j 2 J. (Note that in order to allow
co-location, which is quite common in location problems with
negative weights, we have to represent the facility locations using
a vector.) In the remainder, we use the notions location vector and
solution synonymously.

We denote by dðx; yÞ the length of the shortest path connecting
two points x; y 2 G. Let v i 2 V and x ¼ ð½v r; vs�; tÞ 2 G. The distance
from v i to x entering the edge ½v r;v s� through v r (vs) is given as
Dþi ðxÞ ¼ dðv r ; xÞ þ dðv r ;v iÞ (D�i ðxÞ ¼ dðv s; xÞ þ dðv s;v iÞ). Hence, the
length of a shortest path from v i to x is given by
DiðxÞ ¼minfDþi ðxÞ; D�i ðxÞg. As dðvr ; xÞ ¼ t � ‘ðeÞ and dðv s; xÞ
¼ ð1� tÞ � ‘ðeÞ, the functions Dþi ðxÞ and D�i ðxÞ are linear in x and
DiðxÞ is piecewise linear and concave in x, cf. Drezner (1995). The
distance from v i to its closest facility is finally defined as
DiðXÞ ¼minj2J DiðxjÞ ¼minj2JfDþi ðxjÞ;D�i ðxjÞg. In the following, we
call the functions Dþ=�i ðxÞ and DiðXÞ distance functions of node v i.
Moreover, we say that Da

i ðxjÞ, a 2 fþ;�g, is active for X, if
Da

i ðxjÞ ¼ DiðXÞ.
We consider the objective function FðXÞ ¼ ðF1ðXÞ; . . . ; F jQ jðXÞÞ,

where each FqðXÞ, q 2 Q , is a median function defined as:

FqðXÞ ¼
X
i2V

wq
i DiðXÞ:

We assume the usual definition of Pareto-optimality or effi-
ciency (Ehrgott, 2005). That is, a solution X is called efficient or Par-
eto-optimal, if there exists no solution X0 which is at least as good
as X with respect to all objective function values and strictly better
for at least one value, i.e., 9=X 0 : FqðX0Þ 6 FqðXÞ, 8q 2 Q , and
9q 2 Q : FqðX 0Þ < FqðXÞ. If X is Pareto-optimal, FðXÞ 2 Rk will be
called a non-dominated point. If FqðXÞ 6 FqðX0Þ 8q 2 Q and
9q 2 Q : FqðXÞ < FqðX 0Þ we say X dominates X0 in the decision space
and FðXÞ dominates FðX 0Þ in the objective space.
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The k-criteria p-facility median location problem on networks,
denoted by ðk; pÞ-MLPN, is now defined as the problem of deter-
mining the set of all Pareto-optimal solutions on the graph:
v-min
X2G�...p�G

FðXÞ; ð1Þ
where v-min stands for vector minimization. We denote by ~X the
set of all Pareto-optimal solutions of (1). As mentioned in the intro-
duction, we are interested in obtaining a description of the
complete sets of Pareto-optimal solutions (in the decision space)
and the non-dominated points (in the objective space). Hereby,
the set of Pareto-optimal solutions comprises all alternative loca-
tion vectors for the p facilities that are suitable candidates to choose
from, because no other point can give rise to objective values that
dominate them component-wise.

Let h ¼ ðeh1 ; . . . ; ehp Þ be a p-tuple of not necessarily distinct
edges, where ehj

2 E; j 2 J. Then, the ðk; pÞ-MLPN can be equiva-
lently formulated as:
v-minfFðXÞjX 2 eh1
� � � � � ehp ; h 2 E� � � � � Eg:

Note that because of symmetry it is sufficient to consider only
p-tuples h for which h1 6 � � � 6 hp.
2.2. General concepts

Let h ¼ ðeh1 ; . . . ; ehp Þ be a p-tuple of edges and X 2 eh1 � � � � � ehp

with xj ¼ ðehj
; tjÞ;0 6 tj 6 1. In the following, we derive a subdivi-

sion of eh1 � � � � � ehp into maximal subsets such that the distance
function of each node is linear over such a subset, i.e., each node
is allocated to the same facility for all location vectors in the subset
and each node reaches its closest facility via the same vertex of the
edge that contains this facility. This subdivision will be a building
block of our solution approach.

Let v i 2 V . As the functions Dþi ðxjÞ and D�i ðxjÞ are linear for
xj 2 ehj

, the distance functions DiðXÞ are piecewise linear and con-
cave for X 2 eh1 � � � � � ehp . Moreover, a breakpoint of DiðXÞ occurs
if:

� there are either two distinct facilities xj and xj0 at the same clos-
est distance from v i, i.e., DiðXÞ ¼ Da

i ðxjÞ ¼ Da0

i ðxj0 Þ for a; a0 2
fþ;�g, or if
� the shortest paths from v i to its closest facility xj ¼ ð½vr ;v s�; tjÞ

via vr and, respectively, v s have the same length, i.e.,
DiðXÞ ¼ Dþi ðxjÞ ¼ D�i ðxjÞ.

It is noteworthy that the breakpoints of DiðXÞ for any v i 2 V oc-
cur only for active functions Da

i ð�Þ. See Example 1 for an illustration.
Fig. 1. Network with node weights (in brackets) and edge lengths (Example 1).
Example 1. Let p ¼ k ¼ 2 and consider the graph depicted in Fig. 1.
The node weights wi ¼ ðw1

i ;w
2
i Þ and the edge lengths are shown in

the figure.

Consider the pair of edges h ¼ ð½v2;v3�; ½v4;v5�Þ. In Fig. 2 we
depict the resulting sets of breakpoints of the distance functions
over ½v2;v3� � ½v4;v5� (bold lines). The thin dashed lines indicate
sets of intersection points between pairs of distance functions Da

i ð�Þ
where at least one of the functions is not active.

The breakpoints for all other edge pairs are depicted in
Appendix A.

To derive the desired subdivision, we identify each edge of the
network with the unit interval ½0;1�. Hence, the cartesian product
eh1 � � � � � ehp of the edges of h corresponds to the unit hypercube
½0;1�p. For the ease of notation, we identify xj with tj in the remain-
der. The sets of location vectors that fulfill the breakpoint condi-
tions DðXÞ ¼ Da

i ðxjÞ ¼ Da0

i ðxj0 Þ and DðXÞ ¼ Dþi ðxjÞ ¼ D�i ðxjÞ define
hyperplanes in ½0;1�p. The set of all these hyperplanes induces a
subdivision of the hypercube into subsets such that each distance
function DiðXÞ is linear over each subset of this subdivision. Such
a subdivision is also called an arrangement and the subsets are
called cells, see de Berg, Cheong, van Krefeld, and Overmars
(2008). As these hyperplanes resemble the breakpoints, each cell
of the subdivision is maximal in the sense that all distance func-
tions DiðXÞ; v i 2 V , are linear over the cell. As the subdivision is in-
duced by hyperplanes, all cells are convex polygons. For more
details see Kalcsics (2011). In the following, we denote by Ch the
set of all cells of the subdivision for h. Moreover, for a set
D # Rn; chðDÞ denotes the convex hull of D; extðDÞ the set of
extreme points of D, and jDj the cardinality of D.

Example 1 (cont.). Fig. 2 shows the subdivision of ½0;1�2 into
cells induced by the breakpoints for the edge pair h. In the follow-
ing, we identify a solution X ¼ ðð½v2;v3�; t1Þ; ð½v4;v5�; t2ÞÞ on the
graph with the corresponding point x ¼ ðt1; t2Þ on the unit square.
Then, the two cells C1 and C2 of the subdivision are given by
C1 ¼ chðfð0; 0Þ; ð1;0Þ; ð1;1Þ; ð0:5;1Þ; ð0;0:5ÞgÞ and C2 ¼ chðfð0;0:5Þ;
ð0:5;1Þ; ð0;1ÞgÞ.

For any location vector X in the relative interior of a cell we
either have Diðx1Þ < Diðx2Þ or Diðx1Þ > Diðx2Þ, i.e., each node will
be served by the same facility x1 or x2. Moreover, for each node
v i the shortest path from the node to its closest facility xj will al-
ways pass through the same endpoint of the edge containing the
facility, i.e., we either have Dþi ðxjÞ < D�i ðxjÞ or Dþi ðxjÞ > D�i ðxjÞ.

3. General properties for the ðk;pÞ-MLPN

To determine the set of Pareto-optimal solutions in the graph,
we have to compute all non-dominated points of the set
Fig. 2. Breakpoints of the distance functions DiðXÞ for the pair of edges
h ¼ ð½v2; v3�; ½v4;v5�Þ.
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fFðXÞjX 2 G� . . .p �Gg in the objective space. To that end, using the
subdivision introduced in the previous section for a given p-tuple h
of edges, it will be necessary to compute in a first step the images
of all cells of this subdivision. Given these images for all p-tuples h,
we are then able to derive the set of non-dominated points. In a
last step, we have to identify the set of location vectors on the
graph whose image corresponds to the non-dominated points.
These location vectors then comprise the set of Pareto-optimal
solutions of our problem. In this section we discus how to compute
images of cells and preimages of sets of points in the objective
space. Moreover, we present some properties of the objective
function of the ðk; pÞ-MLPN. The determination of the set of
non-dominated points is described in the next sections.

Let h ¼ ðeh1
; . . . ; ehp Þ be a p-tuple of edges, Ch the subdivision of

½0;1�p into cells, and C be a cell in Ch. Recall that
FðXÞ ¼ ðF1ðXÞ; . . . ; FkðXÞÞ is a mapping from G� . . .p �G to Rk. We
first show how to compute images of cells.

Lemma 1 (Image of a cell). The function F is an affine mapping over
C 2 Ch, i.e., F : C ! Rq, FðXÞ ¼ At þ b, A 2 Rk�p, b 2 Rk, and t 2 ½0;1�p.
Moreover, the image FðCÞ of the cell has dimension rankðAÞ with
0 6 rankðAÞ 6minfp; kg and can be represented in the objective
space as the convex hull of the images of the extreme points of C.
Proof. Let X ¼ ððeh1 ; t1Þ; . . . ; ðehp ; tpÞÞ 2 C. As each distance function
DiðXÞ is linear over C, so will be FqðXÞ, q 2 Q . Hence, we can write
FqðXÞ ¼ aq

1t1 þ � � � þ aq
ptp þ bq where aq

j ; b
q 2 R, q 2 Q . Therefore,

FðXÞ ¼
F1ðXÞ

..

.

FkðXÞ

0BB@
1CCA ¼

a1
1t1 þ . . .þ a1

ptp þ b1

..

.

ak
1t1 þ . . .þ ak

ptp þ bk

0BBB@
1CCCA

¼

a1
1 . . . a1

p

..

. ..
. ..

.

ak
1 . . . ak

p

0BB@
1CCA

t1

..

.

tp

0BB@
1CCAþ

b1

..

.

bk

0BB@
1CCA ¼: At þ b

is an affine mapping. Moreover, FðCÞ is a polytope of dimension
rankðAÞ, with 0 6 rankðAÞ 6 minfp; kg.

As F is an affine mapping over C, it preserves collinearity and
ratios of distances. Let extðCÞ ¼ fvcjc ¼ 1; . . . ; jextðCÞjg. Since C is
convex, FðCÞ is a convex set given by

FðCÞ ¼ F chðfextðCÞgÞð Þ ¼ F
XjextðCÞj

c¼1

kctcjkc P 0;
XjextðCÞj

c¼1

kc ¼ 1

( ) !

¼
XjextðCÞj

c¼1

kcFðtcÞjkc P 0;
XjextðCÞj

c¼1

kc ¼ 1

( )
¼ chðfFðvcÞ jvc

2 extðCÞgÞ: �

If a proper subset U of the image FðCÞ of a cell C belongs to the
set of non-dominated points of fFðXÞjX 2 G� . . .p �Gg in the objec-
tive space, we have to derive the set of points of C whose image
corresponds to U. The next result provides a characterization of
the preimage of a convex set U ( C. Its proof follows directly from
the properties of affine mappings. We will see in the next sections
why it is sufficient to restrict ourselves to convex sets U .
Lemma 2 (Preimage of a set). Let C 2 Ch be a cell and U be a convex
subset of FðCÞ with extreme points z1; . . . ; z#; # P 1. The preimage
F�1ðUÞ of U is given by

F�1ðUÞ ¼ chðft 2 ½0;1�pjzc ¼ At þ b for some c 2 f1; . . . ; #ggÞ:

In this way, F�1 is well defined.
Remark 1. Note that F�1ðUÞ depends on the cell C. Therefore, we
have to store for each point t 2 Rk in the objective space the cell(s)
who ‘‘generated’’ this point, i.e., to whose image FðCÞ the point t
belongs to.

The next example illustrates the computation of images and
preimages.

Example 1 (cont.). Consider again the graph depicted in Fig. 1,
and the edge pair h ¼ ðeh1 ¼ ½v2;v3�, eh2 ¼ ½v1; v4�Þ. The subdivision
Ch contains a single cell that coincides with the whole unit square,

i.e., Ch ¼ f½0;1�2g. Let X ¼ ðx1; x2Þ with x1 ¼ ðeh1 ; t1Þ and
x2 ¼ ðeh2

; t2Þ.

1. Using the weights w1 ¼ ð3;3Þ and w2 ¼ ð2;1Þ for nodes v1 and
v2 instead of the ones depicted in Fig. 1, we obtain
F1ðXÞ¼4t1þ4ð1� t1Þþ3t2þð1� t2Þþ2ð2þð1� t2ÞÞ¼11

F2ðXÞ¼2t1þ2ð1� t1Þþ3t2þð1� t2Þþ2ð2þð1� t2ÞÞ¼9:
Hence,
FðXÞ ¼
0 0
0 0

� �
t1

t2

� �
þ

11
9

� �
:

Since rankðAÞ ¼ 0, the image FðCÞ of C ¼ ½0;1�2 is a single point,
namely ð11;9Þ. Furthermore, F�1ðFðCÞÞ ¼ C \ R2 ¼ C. Fig. 3 shows
C, its image FðCÞ and the preimage of FðCÞ.
2. Using now the alternative weights w1 ¼ ð3;2Þ and w5 ¼ ð1;2Þ

for nodes v1 and v5, we obtain
F1ðXÞ ¼ 2t1 þ 4ð1� t1Þ þ 3t2 þ ð1� t2Þ þ ð2þ ð1� t2ÞÞ
¼ 8� 2t1 þ t2

F2ðXÞ ¼ 4t1 þ 2ð1� t1Þ þ 2t2 þ ð1� t2Þ þ 2ð2þ ð1� t2ÞÞ
¼ 9þ 2t1 � t2:
Hence, � �� � � �

FðXÞ ¼ At þ b ¼

�2 1
2 �1

t1

t2
þ

8
9

:

Since rankðAÞ ¼ 1, the image of C is now a line segment given by
chðfð6;11Þ; ð9;8ÞgÞ. For computing the preimage, let
U ¼ chðfð8:5;8:5Þ; ð7:5;9:5ÞgÞ ( FðCÞ. Then,
F�1ðUÞ¼C\ch
t1

t2

� ����� 8:5
8:5

� �
¼Atþb or

7:5
9:5

� �
¼Atþb

� �� �
¼C\ch

t1

t2

� �
j2t1� t2þ0:5¼0 or 2t1� t2�0:5¼0

� �� �
:

Hence, F�1ðUÞ is the set of all points of the square ½0;1� � ½0;1� be-
tween the two parallel lines defined by 2t1 � t2 þ 0:5 ¼ 0 and
2t1 � t2 � 0:5 ¼ 0. Fig. 4 depicts C, its image FðCÞ, and the preimage
of U# FðCÞ.
3. Using the alternative weight w1 ¼ ð1;2Þ for node v1, we obtain
F1ðXÞ ¼ 2t1 þ 4ð1� t1Þ þ t2 þ ð1� t2Þ þ 2ð2þ ð1� t2ÞÞ
¼ 11� 2t1 � 2t2

F2ðXÞ ¼ 4t1 þ 2ð1� t1Þ þ 2t2 þ ð1� t2Þ þ 2ð2þ ð1� t2ÞÞ
¼ 9þ 2t1 � t2:
Hence,
FðXÞ ¼ At þ b ¼
�2 �2
2 �1

� �
t1

t2

� �
þ

11
9

� �
:

Since rankðAÞ ¼ 2, the image of C is now a polygon with vertices
ð7;10Þ; ð9;8Þ; ð11;9Þ, and ð9;11Þ. For computing the preimage, let
U ¼ chðfð9;11Þ; ð8;10Þ; ð9;9ÞgÞ ( FðCÞ. Then,



Fig. 3. The image of a cell with rankðAÞ ¼ 0.

Fig. 4. The image of a cell with rankðAÞ ¼ 1.
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F�1ðUÞ ¼ C \ ch
t1

t2

� ����� 9
11

� �
¼ At þ b;

��
8

10

� �
¼ At þ b; or

9
9

� �
¼ At þ b

��
¼ C \ chðfð1; 0Þ; ð5=6;2=3Þ; ð1=3;2=3ÞgÞ;
which is again a triangle. Fig. 5 shows C, its image FðCÞ, and the pre-
image of U# FðCÞ.

4. A polynomial algorithm for the ð2;2Þ-MLPN

In this section we first discuss the ð2;2Þ-MLPN to explain the
main ideas of our solution approach, before we turn to the general
case in Section 5. In the following, we present the different steps of
the approach. For a given pair of edges h ¼ ðeh1 ; eh2 Þ, we first com-
pute the set Ch of cells of the subdivision of ½0;1�2 into maximal do-
mains of linearity of the distance functions DiðXÞ. Afterwards, we
compute the image FðCÞ of each cell C 2 Ch. Depending on the rank
of the mapping F with respect to C, the image is either a point, a
line segment, or a two-dimensional polygon, see Lemma 1. We
store for each image a reference to the cell C. To determine the
Fig. 5. The image of a ce
set of non-dominated points eZ of the images of all cells in the
objective space, we adapt the approach in Hamacher et al. (1999)
for the single facility bi-criteria problem. The idea of their approach
is to determine the set of non-dominated points in the objective
space by means of the lower envelope. To facilitate that approach,
they add to the rightmost point of each image a right-open hori-
zontal halfline (as p ¼ 1, all images are points or segments). Then,
each point in the objective space that is not on the lower envelope
will obviously be dominated by a point on the envelope. At the end,
they delete all parts of the lower envelope that belong to horizontal
halflines that have been added before. The remaining points then
comprise the set of all non-dominated points. Coming back to
our problem, to compute the set of all non-dominated points in
the objective space, we compute the image FðCÞ of each cell
C 2 Ch for all edge pairs h (where it is sufficient to consider only
pairs with h1 6 h2). If the image is a point or a segment, we add
it to a set L together with a reference to the respective cell. If
FðCÞ is a polygon, all interior points will be dominated by points
on the boundary. Thus, we only add the bounding edges of the
polygon to L, again with a reference to the respective cell. Note
that each polygon has at most eight bounding edges (Kalcsics,
2011). In view of the general case to be discussed in Section 5,
ll with rankðAÞ ¼ 2.
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we generalize the approach in Hamacher et al. (1999) as follows.
We add to the bottommost point of each image a horizontal and
a vertical halfline extending to þ1. Then, we first determine the
lower envelope in y-direction and afterwards the lower envelope
of the remaining points in x-direction. In this way, all dominated
points will be eliminated. Formally, let le1; le2 denote the lower
envelope functions of a set with respect to the directions of the
two components of the canonical basis of R2. Given a collection
L � R2 of points and segments, Procedure 1 summarizes the steps
to obtain the set of non-dominated points in the objective space.

Procedure 1. (Computing the non-dominated set of a collection
L � R2). <ce:para id="p0330>

1. For each connected component of L find the point ðz1; z2Þ of
the component which has the smallest z2 value and aug-
ment the horizontal halfline fðz1 þ s; z2Þ j s 2 Rþg and the
vertical halfline fðz1; z2 þ sÞ j s 2 Rþg to L.

2. Compute ~Z ¼ ðle1 � le2ÞðLÞ.

The output eZ of Procedure 1 is a collection of segments and
points. Note that by applying both lower envelope functions, all
horizontal and vertical halflines added in Step 1 are deleted at
the end. Each element ‘ of eZ is a point or a subset of a segment
of L and contains a reference to the set of elements of L in which
it is contained. Therefore, we can immediately determine the set
Cð‘Þ of all cells whose image contains ‘. As, in turn, each element
of L contains a reference to the cell generating this element, we
can readily compute the preimage of ‘ with respect to each cell
C 2 Cð‘Þ using Lemma 2. The union of all these preimages yields
the set of Pareto-optimal solutions. Algorithm 1 gives a complete
description of our approach to compute the sets of non-dominated
points and Pareto-optimal solutions.

Algorithm 1. Solution method for the ð2;2Þ-MLPN
Complexity analysis. In the following, we discuss the complex-
ity of Algorithm 1. For each pair of edges, there are at most Oðn2Þ
cells in Ch (Kalcsics, 2011). Using the procedure described in Kalc-
sics (2011), we can compute the linear representation of F over all
cells C 2 Ch in Oðn2Þ total time. Step 5 can be computed in constant
time as each cell has at most eight extreme points (Kalcsics, 2011).
Since there are at most Oðm2Þ pairs of edges, the overall complexity
of Steps 1–5 is Oðn2m2Þ.
Concerning Step 6, the set L has Oðn2m2Þ elements. Hence, we
have to add Oðn2m2Þ horizontal and vertical lines, which can be
done in Oðn2m2Þ time. The lower envelope can be computed in
Oðn2m2 logðnmÞÞ and contains Oðn2m2aðn2m2ÞÞ number of ele-
ments (Hershberger, 1989), where að�Þ is the inverse of the Acker-
man’s function. Hence, the overall complexity for Step 6 is
Oðn2m2 logðnmÞÞ.

As for the computation of preimages of elements in the set of
non-dominated points, Step 8 can be done in constant time since
it is part of the output of the lower envelope algorithm. Step 10
can be carried out in constant time since the preimage of a point
or segment has at most eight bounding segments. Thus, the overall
complexity of Steps 7–10 is equal to the number of components ofeZ , that is Oðn2m2aðn2m2ÞÞ. With this, the overall complexity of
Algorithm 1 is Oðn2m2 logðnmÞÞ.

Remark 2 (Speed-up improvement). If the image of a cell is a
polygon it is not necessary to add all bounding segments of FðCÞ to
L since some of them will be dominated. To compute the set of all
locally non-dominated bounding segments of FðCÞ, we first find the
vertices u1 and u2 of FðCÞ with the smallest F1 and F2 value,
respectively. Then, starting at u1 we add to L all bounding
segments of FðCÞwhen walking from u1 along bdðFðCÞÞ in clockwise
direction towards u2. Although this does not improve the worst
case complexity, the actual time required to compute the lower
envelope will decrease.
Example 1 (cont.). Let Ch ¼ fC1; C2g be the subdivision into cells
obtained in Fig. 2 for h ¼ ð½v2;v3�; ½v4;v5�Þ. Denoting a point
X ¼ ðð½v2;v3�; t1Þ; ð½v4;v5�; t2ÞÞ of the unit square as X ¼ ðt1; t2Þ,
the cells C1; C2 can be described by C1 ¼ chðfð0;0Þ; ð1;0Þ;
ð1;1Þ; ð0:5;1Þ; ð0;0:5ÞgÞ and C2 ¼ chðfð0;0:5Þ; ð0:5;1Þ; ð0;1ÞgÞ. The
description of FðXÞ for X 2 ½v2;v3� � ½v4;v5� depends on the cell
under consideration and is given by:
FðXÞ ¼

�2 0
2 0

� �
t1

t2

� �
þ

9
7

� �
; if X ¼ ðt1; t2Þ 2 C1;

0 �2
4 �2

� �
t1

t2

� �
þ

10
8

� �
; if X ¼ ðt1; t2Þ 2 C2:

8>>><>>>:
Fig. 6 shows in dashed and dotted lines the image of C1 and,

respectively, C2. The set of non-dominated points eZ obtained by
using Procedure 1 is given by:
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eZ ¼ fð6;8Þg [ fð9� 2t1;7þ 2t1Þ;0:5 < t1 6 1;0 6 t2 6 1g;

and is depicted in Fig. 6 by the black segments and filled dots.
Computing the preimages of the set eZ we obtain the following

set of Pareto-optimal solutions:

eX ¼ ðv2; v5Þf g
[ ð½v2;v3�; t1Þ; ð½v4; v5�; t2Þð Þ : 0:5 < t1 6 1;0 6 t2 6 1f g
Remark 3 (The ð2;2Þ-MLPN on trees). If the underlying graph is a
tree, the complexity of Algorithm 1 reduces by a factor of n since
the number of cells of a subdivision of ½0;1�2 into linearity domains
is at most OðnÞ, see Kalcsics (2011).
5. The ðk;pÞ-MLPN

In this section we show how to extend the previous results in
order to derive an algorithmic approach to solve the general prob-
lem with p facilities and k criteria, i.e., the ðk; pÞ-MLPN. Note first
that the ðk; pÞ-MLPN is NP-hard (if p is part of the input) because
it generalizes the (1,p)-MLPN (Hakimi, 1965). Thus, there does
not exist a polynomial algorithm to solve the ðk; pÞ-MLPN (unless
P ¼ NP).

The outline of the approach for the general case is the same as
for p ¼ k ¼ 2. For a given p-tuple of edges h ¼ ðeh1 ; . . . ; ehp Þ we first
compute the set Ch of cells of the arrangement that gives us the
subdivision into linearity domains (Kalcsics, 2011). For each cell
C 2 Ch we then compute the image FðCÞ of C. If FðCÞ has dimension
lower than k, we add it to a set L. If FðCÞ has dimension k we just
add the facets of the induced polytope to L. Moreover, we store for
each element augmented to L a reference to its respective preim-
age (a cell C 2 Ch). We repeat this for all p-tuples h (where it is suf-
ficient to consider only p-tuples with h1 6 . . . 6 hp). To compute
the set of Pareto-optimal solutions eX , we adapt Procedure 1 to
the general case with p facilities and k criteria as follows. Again
we denote by leq the lower envelope function of a set with respect
to the direction of the qth component of the canonical basis of Rk

(see Sharir (1994) for details on the lower envelope procedure).

Procedure 2. (Computing the non-dominated set eZ of a collection
L � Rk). Given a collection L � Rk of polytopes (of dimension
lower than or equal to k� 1) the set eZ #L of non-dominated points
of L can be obtained as follows:
1. For each element h 2 L compute the convex hull of the
domination cones attached to each point c 2 h. Then add
to L the set of all facets of this set.

2. Compute ðle1 � . . . � lekÞðLÞ.

Algorithm 2 now gives a description of the necessary steps re-
quired to compute the set of Pareto-optimal solutions and non-
dominated points.

Algorithm 2. ðk; pÞ-MLPN
Complexity analysis. In the following, we discuss the complexity of
Algorithm 2. For each p-tuple of edges, there are at most g ¼ 2np2

hyperplanes of the type Da
i ðxjÞ ¼ Da0

i ðxj0 Þ; i 2 V ; a; a0 2 fþ;�g;
j; j0 2 f1; . . . ;pg. Thus, there are OðgpÞ cells in Ch (Edelsbrunner,
1987). To compute the linear representation of F over a cell
C 2 Ch, we pick an arbitrary vector X 2 C. For this X we first
determine DiðXÞ ¼ Da

i ðxjÞ; a 2 fþ;�g; j 2 f1; . . . ;pg for all i 2 V .
Afterwards, we can compute FqðXÞ ¼

P
i2V wq

i DiðXÞ ¼ aq
1t1

þ � � � þ aq
ptp þ bq. Both steps require in total OðnpkÞ time and this is

done only once for each cell. To compute the image of a cell we
determine FðtÞ ¼ At þ b for every extreme point t 2 extðCÞ, where
jextðCÞj ¼ OðgpÞ (Edelsbrunner, 1987), and then we plot all these
extreme points (in OðgppkÞ time). Thus, computing the image of
all cells in Ch can be done in Oðg2ppkÞ. Since we have to repeat this
for each p-tuple of edges, the overall effort for Steps 1–5 is
Oðmpg2ppkÞ.

Concerning Step 6, for each element h 2 L we have to compute
the union of the domination cones attached to each point c 2 h, i.e.,
the set T ¼ fc þ Rk

P jc 2 hg. As h is convex, this set is identical to the
convex hull of the domination cones attached to each extreme
point of h, i.e., T ¼ chðfc þ Rk

P jc 2 extðhÞgÞ. To compute T for each
h 2 L, we restrict the domination cones to ½0;M�k where M is
sufficiently large. Then T = ch({c [ {aja = c + Meq, eq = (0, -
. . .q�1, 0, 1, 0, . . . , 0), q 2 Q}: c 2 ext(h)}) is the convex hull of
Oðgp þ kgpÞ points. Since the convex hull of s points in Rk can be
computed in Oðsbk2þ1cÞ, the convex hull of the domination cones at-
tached to the extreme points of a cell can be computed in
OððkgpÞb

k
2þ1cÞ. Next, Step 2 in Procedure 2 computes the lower enve-

lope of the set L. Sharir (1994) shows that the complexity of the
lower envelope (in one direction) in Rk of d surfaces or surface
patches (all algebraic of constant degree, and bounded by algebraic
surfaces of constant degree) is Oðdkþ�Þ for any � > 0 with the con-
stant of proportionality depending on �; k; s (the maximum number
of intersections among any k-tuple of the given surfaces) and on
the shape and degree of the surface patches of their boundaries.



Fig. 6. Images of cells depicted in Fig. 2 (dashed and dotted lines) and non-
dominated solutions (continuous line and filled dots).

Fig. 7. Network with node weights (in brackets) and edge lengths (Example 2).

Fig. 8. Active intersection hyperplanes and subdivision into cells for edges
e1 ¼ ½v2;v3�, e2 ¼ ½v4;v5� and e3 ¼ ½v2; v1�. The cell delimited by points (1,0.5, 1),
(1,1,1), (1,1,0.5), (0.5,1,0.5) is emphasized.

Fig. 9. Image of the cell delimited by points (1,0.5,1), (1,1,1), (1,1,0.5), (0.5,1,0.5)
emphasized in Fig. 8.
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The number of facets of a polytope with s extreme points in Rk is

Oðsbk2þ1cÞ (Gale, 1963). Thus, for each element h 2 L the above con-

vex hull construction generates at most OððkgpÞb
k
2þ1cÞ facets. Since

each choice of a p-tuple of edges generates a subdivision with
OðgpÞ cells, the input size of the lower envelope algorithm is

OðmpgpðkgpÞb
k
2þ1cÞ. Hence, the complexity for computing the lower

envelope in each direction of the canonical basis is

OððmpgpðkgpÞb
k
2þ1cÞ

kþ�
Þ and the overall complexity is Oðkðmpgp

ðkgpÞb
k
2þ1cÞkþ�Þ. This implies that Step 6 can be computed in

OðkðmpgpðkgpÞb
k
2þ1cÞ

kþ�
Þ. Note that, in the worst case, the output of

the lower envelope algorithm contains as many elements as the

cardinality of the input, that is, OðmpgpðkgpÞb
k
2þ1cÞ.

Regarding Step 9, the number of facets (of dimension p� 1) of a
cell belonging to an arrangement of b hyperplanes in Rp (recall that

there are g ¼ 2np2 hyperplanes of the type Da
i ðxjÞ ¼ Da0

i ðxj0 Þ; i 2 V ; a;

a0 2 fþ;�g; j; j0 2 f1; . . . ; pg) is bounded by OðbÞ since each
hyperplane can appear at most once on each cell. Then,

‘ ¼ FðCÞ \ eZ can be computed in Oðmpg2pðkgpÞb
k
2þ1cÞ time, given that

we have to process OðgÞ facets of FðCÞ with OðmpgpðkgpÞb
k
2þ1cÞ ele-

ments in the non-dominated set eZ . Adding one preimage of
F�1ð‘Þ requires first to compute S ¼ fF�1ðcÞ; c 2 extð‘Þg for all ex-
treme points c of ‘ in OðkpgpÞ. Later, we compute the convex hull

of S in OððkpgpÞb
p
2þ1cÞ, and intersect the result with ½0;1�p in

Oð2pðkpgpÞb
p
2þ1cÞ time. Thus, considering all cells in all p-tuples of

edges, Steps 7–10 can be computed in Oðmpgp max

fmpg2pðkgpÞb
k
2þ1c

;2pðkpgpÞb
p
2þ1cgÞ. Finally, the overall complexity of

the complete algorithm is OðmaxfkðmpgpðkgpÞb
k
2þ1cÞkþ�;mpgp2p

ðkpgpÞb
p
2þ1cgÞ for the case k P 3.

For the bicriteria problem (2,p)-MLPN it is of interest to analyze
the complexity since the lower envelope can be computed effi-
ciently using Procedure 1. Steps 1–5 can be computed in
Oðpg2pmpÞ time as described in Algorithm 2. The remaining steps
are done as in Algorithm 1. As jLj ¼ Oðpg2pmpÞ, Step 6 requires
Oðpg2pmp logðpgmÞÞ time (recall that the complexity of the lower
envelope of s elements in R2 is OðslogsÞ). The difference with re-
spect to the complexity computed in Section 4 comes from the fact
that in this case we cannot exploit that the number of extreme
points of each cell is bounded by a constant (eight).

As for the computation of preimages of elements in the set of
non-dominated points in the objective space, Step 8 can be done
in constant time since it is part of the output of the lower envelope
algorithm. Adding one preimage of F�1ð‘Þ requires first to compute
S ¼ fF�1ðcÞ; c 2 extð‘Þg for every extreme point c of ‘ in OðpgpÞ. La-
ter we compute the convex hull of S in OððpgpÞb

p
2þ1cÞ, and intersect

the result with ½0;1�p in Oð2pðpgpÞb
p
2þ1cÞ. Thus, considering all cells

in all p-tuples of edges, Steps 7–10 can be computed in
Oðgpmp2pðpgpÞ

p
2Þ. Finally, the overall complexity of the complete

algorithm is Oðgpmp2pðpgpÞ
p
2Þ.

Next, we illustrate Algorithm 2 with an example of a 3-facility
3-objective problem.

Example 2. Let G ¼ ðV ; EÞ be the graph depicted in Fig. 7 and let
p ¼ k ¼ 3. Weights wi ¼ ðw1

i ;w
2
i ;w

3
i Þ and edge lengths are shown

in the figure. Observe that nodes v2 and v4 contain negative
weights.

As before, we identify a solution X ¼ ððe1; t1Þ; ðe2; t2Þ; ðe3; t3ÞÞ on
the graph with the corresponding point x ¼ ðt1; t2; t3Þ of the unit
cube. Choosing, for example, the edges e1 ¼ ½v2;v3�; e2 ¼ ½v4;v5�
and e3 ¼ ½v2; v1�, we obtain the following three hyperplanes:
Dþ2 ðx1Þ ¼ Dþ2 ðx3Þ;D�1 ðx3Þ ¼ Dþ1 ðx2Þ;D�4 ðx3Þ ¼ Dþ4 ðx2Þ. Fig. 8 depicts
these hyperplanes and shows the resulting subdivision into
linearity domains as described in Section 2.2. In this case, we
obtain six cells that correspond with the different possible
allocations when we place a facility on each selected edge.
Consider now the cell C delimited by the points ð1;0:5;1Þ;
ð1;1;1Þ; ð1;1;0:5Þ; ð0:5;1;0:5Þ depicted in grey in Fig. 8. In this cell



Fig. 10. Subdivision into linearity domains for all pairs of edges in Example 1. The sets of points where Da
i ðxjÞ ¼ Da0

i ðxj0Þ for i 2 V , a 2 fþ;�g, j 2 f1;2g are denoted as IPaa0
ijj0 .
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v1 and v2 are allocated to the facility placed in e3;v3 to the one
placed in e1 and v4;v5 to the one placed in e2. For this cell, the
affine linear representation of F is given by

FðXÞ ¼
F1ðXÞ
F2ðXÞ
F3ðXÞ

0B@
1CA ¼ �4 �4 �2

�2 �4 þ2
�2 �2 �4

0B@
1CA t1

t2

t3

0B@
1CAþ 15

1
7

0B@
1CA
The image of C in the objective space is depicted in Fig. 9.
The resulting subset of non-dominated points eZ with respect to

C is given byeZ ¼ ð7� 2t3;�5þ 2t3;3� 4t3Þ;0:5 6 t3 6 1f g:
Computing the preimages of the set eZ , we obtain the following set
of Pareto-optimal solutions with respect to C:eX ¼ ðv3; v5; ð½v2;v1�; t3ÞÞ;0:5 6 t3 6 1f g
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Note that two facilities are located on the vertices v3 and v5 and
the third facility along any point of the subedge ð½v2; v1�; t3Þ;
0:5 6 t3 6 1.

6. Conclusions

In this paper we have provided a methodology to obtain a
complete description of the set of Pareto-optimal solutions for
the multicriteria p-facility median location problem on networks.
It is noteworthy that this paper is the first attempt to characterize
the solution set of this problem. Note that the single criteria
p-facility median problem is already NP-hard and handling closest
assignments makes more difficult to deal with the multifacility
version.

The main tools used to obtain the set of Pareto-optimal
solutions is the characterization of the linearity domains of the
distance functions and the lower envelope. Hence, this analysis
can be easily extended to more general objective functions as long
as we can again determine these domains and their image and
preimage. In this sense, an open line of research is to obtain the
characterization of Pareto-optimal solutions for the case of ordered
median objective functions. Recall that this function includes as
particular instances most classical objectives functions used in
Location Theory, as for instance the median, center, k-center and
cent-dian, see Nickel and Puerto (2005) for further details.
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Appendix A. Subdivision into linearity domains for all pairs of
edges in Example 1

See Fig. 10.
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